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The Reduced Monotonic Regression Method 

Michael J. SCHELLand Bahadur SINGH 

Medical researchers often desire to categorize patients into monotonic response groups based on the relationship between con- 
tinuous variables. Isotonic regression fits consist of level sets of increasing value, for which the estimated response is constant. 
However, the number of level sets obtained is often large, preventing simple description. This article introduces two new nonpara- 
metric methods called reduced isotonic regression and reduced monotonic regression, the latter being a two-sided extension of the 
former for use when the direction of the trend is unknown. Using a backward elimination algorithm, the new procedures reduce the 
number of level sets by combining those whose values do not differ greatly. For the statistical relations examined here, the reduced 
monotonic method averaged at most 30% of the number of level sets obtained for isotonic regression. The method is illustrated 
with an example that examines the relationship between risk factors for survival among children with leukemia. In simulation 
studies, the reduced monotonic method fits the data as closely as alternative methods that combine isotonicity and smoothing, while 
improving greatly on isotonic regression. The method is also related to changepoint models of normally distributed sequences. 

KEY WORDS: Changepoint analysis; Isotonic regression; Monotonicity; Nonparametric regression; Order-restricted inference. 

1. INTRODUCTION 

In medical research two variables are often monotoni- 
cally related to each other; for example, amount of exer- 
cise and serum cholesterol level. However, many of these 
relationships are decidedly nonlinear. Isotonic regression 
theory (see Robertson, Wright, and Dykstra [RWD] 1988) 
provides a nonparametric solution to this problem. The so- 
lution, which is composed of level sets for which the esti- 
mated response is constant, minimizes the sum of squares 
of the model to the data under the isotonicity restriction; 
that is, where E(YIX = x) is nondecreasing in X for an 
independent variable X and dependent variable Y. 

The isotonic regression fit reduces the description of n 
points to 1 < n level sets that could be used to model the 
population by yielding a model consisting of 1 more-or-
less homogeneous subpopulations-the fewer the level sets, 
the simpler the model. Some level sets-particularly those 
with few elements or with small differences in step sizes 
from their neighbors-could be amalgamated with adjacent 
neighbors to improve the parsimony of the model. We de- 
scribe a procedure for implementing this with a backward 
elimination procedure. We refer to this method and a two- 
sided extension of it as the reduced isotonic regression and 
the reduced monotonic regression methods. A similar idea 
was proposed by Bacchetti (1989), who developed an addi- 
tive isotonic model with a dichotomous response variable. 

We illustrate the new method by an example by Behm 
et al. (1992), which is analyzed in Section 3. Behm et al. 
evaluated the prognostic importance of the expression of a 
leukemia cell surface antigen, CD45, in 187 children diag- 
nosed with B-lineage acute lymphocytic leukemia (ALL). 
Cell surface antigens are important features of the biol- 
ogy of a cell, because they define how a cell will inter- 
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act with other cells or extracellular compounds. Childhood 
acute leukemia is not a homogeneous disease, and investi- 
gators frequently examine differences in antigen expression 
to explain responsiveness to treatment (often measured by 
survival). The normal function of a given antigen is usu- 
ally unknown. A cancer researcher wants to know whether 
this antigen contributes to the heterogeneity of response 
that is seen. Understanding the function of an antigen is 
a lengthy process and will probably not be undertaken by 
cancer researchers unless prognostic significance is found. 
One aspect of the analysis of CD45 was to examine its rela- 
tionship to accepted prognostic factors, which may provide 
additional biological insight into patient heterogeneity. For 
example, if CD45 expression is associated with elevated 
white blood count, this might suggest that patients with 
higher CD45 counts have more aggressive disease. Patients 
were dichotomized at 20% CD45 expression, because the 
prevailing theory was that low, but nonzero expression was 
probably due to contaminating cells and that true expres- 
sion levels should be either 0% or 100%. DNA index and 
white blood cell count are two prognostic factors found to 
be associated with the presence of CD45 (CD45 2 20%). It 
is of interest to know whether the dichotomization of CD45 
at 20% represents a natural cutpoint for the data. 

While epidemiologists and other medical researchers of- 
ten wish to divide research subjects into risk groups by cat- 
egorizing some continuous variable, methods that form the 
categories on the basis of the specific values obtained from 
the data remain controversial (Altman, Lausen, Sauerbrei, 
and Schumacher 1994; Hilsenbeck, Clark, and McGuire 
1992). One popular approach is to form the groups by 
maximizing the differences of some statistic between them. 
The predominant criticism is leveled at methods for which 
no adjustment of significance level is made when multiple 
splits are considered. Miller and Siegmund (1982) derived 
the asymptotic distribution of the maximal chi-squared 
statistic for the association of a dichotomized continu- 
ous variable and a second dichotomous variable. Hawkins 
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(1977) and Worsley (1979) presented solutions based on 
likelihood ratio statistics to a changepoint problem, where a 
continuous independent variable is dichotomized to model 
a single shift in mean level in a normally distributed de- 
pendent variable. The method introduced here could also 
be formulated as a changepoint model, where an unknown 
number of monotonic shifts may occur. This method, like 
the maximal chi-squared and likelihood ratio changepoint 
statistics, adjusts for the multiple comparisons involved. 

In recent years methods have been described that com- 
bine the isotonic regression estimator with a smoothing 
function in a sequential fashion. The smoothing step con- 
fers the double advantage of reducing model complexity (by 
decreasing the degrees of freedom of the fit, as defined in 
Sec. 4) and yielding a continuous model. Friedman and Tib- 
shirani (1984) recommended first smoothing and then 
isotonizing the data; Mukerjee (1988) recommended the 
reverse sequence. Mammen (1991) provided theoretical re- 
sults under certain conditions to determine when each ap- 
proach would be better. Although a reduced monotonic re- 
gression fit is discontinuous, some comparisons of it with 
these alternative approaches are valuable. The reduced iso- 
tonic regression and reduced monotonic regression methods 
are developed in Section 2. The latter method is illustrated 
with a medical example in Section 3 and compared to other 
monotonic regression methods via simulation in Section 4. 

2. REDUCED ISOTONIC REGRESSION AND 
REDUCED MONOTONIC REGRESSION METHODS 

Let ( X i , Y , ; w i ) , i  = 1 , . . .  , n  denote n ordered pairs 
. . . where X I  < X 2  < . . .  < X n , Y ,  = pi + ~ ~ : p 

p,, wi ,  i = 1 , . . . n are the weights, and ci - iid N ( 0 ,a 2 ) .  
Let n ( x )  = E ( Y I X  = x ) .  Thus n ( x )  is a nondecreasing 
function of x .  Let p,* denote the isotonic regression estima- 
tor of p,. One tests for a statistically significant trend in the 
isotonic regression estimator by testing Ho: pl = . . . = pn 
versus H I :  pl < . . . 5 p,, with at least one strict inequality, 
using the statistic 

where f i  = C;="=,liY,/ C:=tui .  Note that r; is a special 
case of the likelihood ratio statistic E;, defined by RWD 
(1988, p. 63). This choice of notation emphasizes the sim- 
ilarity between this statistic and the usual Pearson r2 . For 
the other models presented, r 2 is defined analogously to be 
the sum of squares for regression divided by the total ad- 
justed sum of squares. The value of r; lies between 0 and 
1 and represents the proportion of variability explained by 
the model. The fit is composed of a random number of level 
sets. The estimator is the least squares estimator over the 
class of nondecreasing functions. Consequently, r; > Pear-
son r2 (assuming that the regression slope is nonnegative) 
and any other nondecreasing regression fit where the Y val-
ues are not transformed. Next, reduced isotonic regression, 
an analog of isotonic regression, is motivated and developed 
using a backward elimination procedure. 

2.1 Backward Elimination Procedure 

Consider combining level sets m and m + 1 for some 
1 5 m < 1 - 1 . L e t  

where B l , . . . , Bl  denote the ordered level sets of p* = 

( p ; ,. . . , p:), W 3  = uli,and U, = p,*,i E B3. Then 
the new fit will be preferred if 

is statistically nonsignificant. To assess significance, we first 
determine the distribution of Equation (2). Given (I),  (2) can 
be simplified to 

~ 
where C = B ,  u B,+l and f i ,  = pzrn:i E C :  the 
common mean of all Y values in C.  Straightforward ex- 
pansion shows that (3) = W , W , + l A 2 / ( ~ ,  + W,+l) = 

A2/[ (1 /w, )  + ( l /W,+l)] ,  where A = U,+I - U,. Thus 
the statistic is larger if the difference in the level set means 
is larger or if the weight sizes of the level sets are larger. 
We can derive the distribution of (3) only under Ho for the 
case 1 = 2. In this case (3) divided by 02:conditional on 1 ,  is 
the Tol statistic for the data Y,,which has a X: distribution, 
as shown in lemma C of RWD (1988, p. 72). Let 

Note that under Ho 

- 0 2 . X i - l ,conditional on 1 (RWD 1988, p. 73). Expressions 
(3) and (4) are independent, conditional on 1 ,  because they 
arefunctionsof { U j : j= I : . . .  ,1) and { Y , - U j : i  E B j , j  = 

1 , . . .1), which are independent (RWD 1988, p. 73). Thus 
under Ho if 1 = 2, then A, has an F distribution with 1 
and n - 2 degrees of freedom conditional on 1. 
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The backward elimination procedure to obtain the re- pendent variable. With the appropriate choice of a*:one can 
duced isotonic regression estimator of size a is as follows: have an a-level test of Ho versus H1 as defined in Section 2 

(for the reduced monotonic regression, H1: p1 5 . . . 5 pk 

1. Obtain the usual isotonic regression estimator with 1 
level sets. This can be done by the pool-adjacent-violators 
algorithm (see RWD 1988, p. 8). 

2. Compute A = min, A,, m = 1, . . . , k - 1, where k is 
the current number of level sets. 

3. If A 5 Fl,n-k;a* A, for some r ,  then com- and A = 

bine level sets r and r + 1,using (I),  and let k = k - 1. 
4. Repeat Steps 2 and 3 until A > Fl,n-k;a*. 

The choice of a*is discussed later in this section. The re- 
sulting estimator is termed the reduced isotonic regression 
estimator. Note that the reduced isotonic regression fit is 
identical to the isotonic regression fit when the data per- 
fectly observe the trend, because the denominator of A, is 
0 in that case. To obtain the reduced antitonic regression fit 
(where p1 > . . . > p,), multiply the Y,  by -1 before ap- 
plying the backward elimination procedure. To obtain the 
reduced monotonic regression fit (where p1 5 . . . 5 p, or 
p1 > . . . > p,), first choose the standard isotonic or the 
antitonic fit, whichever has the largest r;,  and then apply 
Steps 2-4. 

Several observations can be made regarding reduced iso- 
tonic regression and reduced monotonic regression. In many 
applications, the investigator has strong a priori beliefs that 
the monotonic trend will be in a particular direction. This is 
usually true of dose-response relations. In other instances, 
however, an investigator is unsure of the directionality of 
the trend but still believes that a trend should exist. In- 
deed, the usual practice in the linear regression model is 
to obtain the least squares estimate for the slope and not 
restrict it to be nonnegative or nonpositive prior to data 
analysis. Reduced monotonic regression retains the mono- 
tonicity assumption of linear regression but relaxes the lin- 
earity requirement, because, as Fairley, Pearl, and Verducci 
(1987) noted in their title, there can be a "penalty for as- 
suming that a monotone regression is linear." The decision 
to use reduced isotonic regression or reduced monotonic 
regression corresponds to whether one wishes to perform 
a one- or two-sided test for monotonic trend. The reduced 
monotonic regression fit is discontinuous, even though the 
underlying regression will often be presumed to be contin- 
uous. Though not ideal, this property is shared by many 
other estimators, including the isotonic regression estima- 
tor itself, the Kaplan-Meier estimator, and the empirical 
distribution function. The backward elimination procedure 
described here is superficially identical to the variable selec- 
tion procedure. However, it is quite different in one respect; 
for an appropriate choice of &*, the existence of multiple 
level sets can be used as evidence of a monotonic trend at 
a defined a level, as described explicitly in the next para- 
graph. 

The reduced isotonic (monotonic) regression estimator 
obtained depends on the choice of a* .  Using a* = 1 
gives the usual isotonic regression estimator, whereas using 
a*= 0 gives a single level set at the overall mean of the de- 

with at least one strict inequality or p1 > . . . > p k  with 
at least one strict inequality) by rejecting Ho if and only 
if the reduced isotonic (monotonic) regression fit has more 
than one level set. Using a* in the backward elimination 
procedure does not yield an a*-level test, because A has an 
exact F distribution only when 1 = 2. For instance, when 
a*= .05, the backward elimination procedure did not yield 
singleton level sets in 502 and 639 of 1,000 simulated sam- 
ples of random noise data for n = 50 and 200. This finding 
is comparable to that of Miller and Siegmund (1982), who 
dichotomized a continuous variable to yield a maximal 2 x 2 
chi-squared test. With the smaller group restricted to be at 
least of the entire sample, they showed that under the 
null hypothesis, the maximally selected chi-squared statis- 
tic will exceed the nominal 5% level 49% of the time. They 
determined the appropriate asymptotic critical value using 
Brownian bridge theory. For our application, we do not fix 
the number of level sets at 2 and do not know of a theoret- 
ical solution. Let us call the a*that yields an a-level test 
of Ho versus H1 the stepwise a level. 

Using simulation methods, we obtained estimates of a* 
that produce a-level tests for a given a under Ho. We ap- 
plied the backward elimination algorithm to 100,000 sam- 
ples of random noise data (Xi - iid U[-1, 11, Y ,  - iid 
N(0, I ) ,  with Xi independent of x)for various n to es- 
timate a* (denoted &*) for both reduced isotonic regres- 
sion and reduced monotonic regression analysis. The sim- 
ulations were done using RANUNI and RANNOR in SAS. 
Table 1 provides &* and 95% confidence limits from the 
simulation study. For a = .05:&* is the 5,000th smallest 
" p  value" when only two level sets remain, and the 4,865th 
and 5,135th lowest p values give the 95% confidence inter- 
val limits (obtained from binomial theory). Note that &* de-
creases rapidly for n < 50, but flattens out considerably for 
n > 50. For a = .05 and 20 5 n 5 800,&*= .012 * n-.361. 
In no case was a simulation dataset found to have both an 

Table 1. Simulated ti* for the Reduced lsotonic Regression and 

Reduced Monotonic Regression Estimators for Selected ol 


a = . I 0  a = .05 ol = .01 

n h* diff &* diff 8* diff 

Reduced lsotonic Regression 

10 ,0005 .0136 ,0003 
20 ,0003 .0095 ,0002 
50 ,0002 ,0062 .0001 

200 ,0002 ,0038 .0001 
800 .0001 ,0026 .0001 

Reduced Monotonic Regression 

10 ,0003 .0062 ,0002 
20 ,0002 .0042 .0001 
50 .0001 ,0028 .0001 

200 .0001 ,0017 .0001 
800 .0001 .0011 .oooo 

NOTE: Adding and subtracting dlff from a** comprises at least a 95% confidence interval for 
a*.  
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Table 2. Comparison of Methods for the CD45 Example 

LOG WBC Dl 

Method r2 df r2 df 

isotonic and antitonic fit with two or more level sets when 
the &* corresponding to a 5 .05 was used. Thus for 10 5 
n 5 800. reduced monotonic regression can be regarded as a 
two-sided version of reduced isotonic regression, and the a* 
giving an a-level test for monotonic regression will give an 
a/2-level test for reduced isotonic regression. Throughout 
the remainder of this article, we use the estimated stepwise 
a level where a = .05. We now illustrate the use of reduced 
monotonic regression with a medical example. 

3. AN EXAMPLE 

The data for this example have been described in Section 
1. It was reasonable to assume that the relationship between 
the percent of expression of CD45 and both the logarithm 

of the white blood count (LOGWBC) and DNA index (DI) ~, 

would be monotonic, but it was unknown whether low or 
high values of CD45 would be associated with high LOG- 
WBC. Thus we performed reduced monotonic regression 
(R) for LOGWBC and DI on CD45 expression to assess 
the choice of 20% CD45 expression as a cutpoint. The per- 
centage of leukemia cells from an individual patient that 
express CD45 ranged from 0% to 99%, with a median of 
85%. We dropped three outliers from DI before analyzing 
the data. Increasing CD45 percentage was associated with 
increasing LOGWBC and decreasing DI. Because expres- 
sion was obtained in percent units, numerous ties exist for 
CD45. Thus we applied reverse secondary sorts to the two 
regressions to prevent the isotonization step from having 
multiple level sets in a single CD45 value. Because there 
are 68 distinct CD45 values, one might expect the stepwise 
a level 6*= .0026 for a = .05: using the formula in Section 
2. A simulation study of 1,000 random noise datasets, using 
the exact groupings of CD45 values, yielded the estimate 
6*= .0034. The strata identified for LOGWBC (Fig. la) 
were .88 for CD45 5 46 (n= 46), 1.18 for 48 I CD45 
5 96 (n= 117), and 1.66 for ~ ~ 2 974 (n5= 24), yield-
ing r2 = ,159. whereas r2 = .066 when the data were di- 
chotomized at 20%. The strata for DI (Fig. lb) were 1.14 for 
CD45 5 56 (n= 54) and 1.03 for CD45 2 57 (n= 130), 
giving r2  = .286, compared to r2  = .209 for the split at 

. I.. .I. -.....I.-

0 20 40 60 80 100 

CD45 
(b) 

Figure 1. The Functions for Linear Regression (Short-Dashed Line), Isotonized-Then-Smoothed Regression (Solid Line), and Reduced Monotonic 
Regression (Long-Dashed Line), Along With the Data for the Regression of (a) LOGWBC and (b) Dl on CD45. 
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Table 3. Estimated Minimum Significant r2 Values at or = .05 

r 

Method n = 10 n = 20 n = 50 n = 200 n = 800 

S 
I 
R 
S I 
IS 
L 

,692 
,729 
,633 
,545 
,459 
,399 

,601 
,457 
,376 
,326 
,244 
.I 97 

,356 
,225 
,173 
.I 40 
.091 
,078 

,099 
,070 
.049 
,036 
,024 
,019 

,028 
.021 
.013 

,006 
.0°9 

,005 

NOTE: Adding and subtracting ,014, ,009, ,005, ,004, and ,001 from r2 for n = 10, . . . , 800 
comprises at least a 95% confidence interval (except that ,018 is needed for S when n = 50). 
The results for I and L are exact. 

20%. The p values for combining the remaining adjacent 
level sets, estimated from the simulations, are p = .021 
and .002 for LOGWBC and p < .001 for DI. These re- 
gression functions challenge the theory that patients should 
be dichotomized at roughly 20% CD45 expression. In fact, 
because we believe that a simple parametric model should 
be preferred when it yields an adequate fit, the linear fit is 
preferred for the regression of DI on CD45. 

For comparative purposes, we examined five other regres- 
sion methods: isotonic regression (I), smoothed regression 
(S), smoothed-then-isotonized regression (SI), isotonized- 

Journal of the American Statistical Association, March 1997 

then-smoothed regression (IS), and linear regression (L). 
Although we are examining monotonic trends here (except 
possibly for S), we retain the word "isotonic" for these 
other methods because the term is well established for them. 
(Note: The IS regression function is not necessarily mono- 
tone for an arbitrary smoother.) The smoother that we used 
was the running mean smoother with the span size deter- 
mined by the cross-validation method described by Fried- 
man and Tibshirani (1984). The running mean smoother is 
a less than ideal choice of smoother when many ties exist in 
the data, as is the case here. It does permit easy computa- 
tion of degrees of freedom (see Sec. 4.1), which is difficult 
for many smoothers. Using an approximate F-test method 
to compare regression models, as recommended by Hastie 
and Tibshirani (1990, sec. 3.9), R outperformed the other re- 
gression models in fitting both LOGWBC and DI, although 
DI is well modeled using linear regression and should be 
favored in practice (see Table 2). Figure 1 shows the fits for 
R, L, and IS. Table 2 also shows the inadequacy of CUT20, 
where the data are dichotomized at 20%. 

4. COMPARISON OF REGRESSION METHODS 

In this section we compare the reduced monotonic re- 
gression estimator developed in Section 2 to the other five 

Figure 2. Plot of the Coefficient of Determination, p2, Versus the Median Degrees of Freedom for the Linear Statistical Relation of the (a) I (Solid 
Line) and (b) R (Solid Line), SI (Short-Dashed Line), and IS (Long-Dashed Line) Regression Methods for n = 50 (Bottom Set), 200 (Middle Set), 
and 800 (Top Set), Based on 1,000 Simulations. Because the median degrees of freedom for R are a small integer, the mean was used instead to 
provide smoother curves. 
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Table 4. Median df/dfl Ratios ( O h )  

Overall p2 = .30 p2 = .95 

n n n 

Method 50 200 800 50 200 800 50 200 800 

S 35 27 22 34 28 24 36 27 20 
SI 33 25 20 32 26 22 33 24 18 
IS 28 22 17 26 22 18 30 21 16 
R 26 22 20 24 22 18 29 23 20 

NOTE: The overall ratlo includes .3 spZs.95 

regression methods described in Section 3 for the example. 
Using 10,000 samples of random noise data as described in 
Section 2, Table 3 shows the estimated minimum r2 values 
that are significant at a = .05 for the different regression 
methods and sample sizes, with the exact values for isotonic 
regression obtained using methods described by Kudo and 
Yao (1982). This table shows one disadvantage of increased 
model flexibility. I and S have much higher minimum r2 val-
ues that are statistically significant, particularly for small 
sample sizes. On the other hand, L has significantly lower 
limits than other methods and would be preferable when 
the true correlation is very weak and consequently could 
not be demonstrated by the other methods. 

We carried out a Monte Carlo experiment to compare the 
six regression methods for n = 50,200, and 800. (Recall 
that for reduced monotonic regression, we are using ti* to 
give a .05-level test.) We examined five statistical relations: 
linear (Y = a x  + E),mean shift (Y = E if X < 0; Y = a 
+ & i f  X > 0), elbow (Y = & i f  X < 0 ; Y  = a x + &  
if X > 0), sigmoidal (Y = aQ(2.5X) + E),and exponen- 
tial (I' = aex + E),  where X - U[-l,1], E - N(0,I) ,  Q 
is the Gaussian cumulative distribution function and a is 
determined for each statistical relation and n so that the 
coefficient of determination, p2 ,  would be .05, .10(.20).90, 
and .95. We simulated each situation 1,000 times, and used 
two measures to compare the regression methods: r2 - ,02 
to assess overfitting or underfitting by the model, and de- 
grees of freedom of the fit (as described below in the next 
section), which is a measure of model complexity. 

4.1 Degrees of Freedom 

Let f^(zi),i = 1,. . . ,n be called a regression estimator 
or a smoother. If f^ = S y  for some n x n matrix S = ISij} 
and y = (yl, . . . ,yn)T, then we call S a smoother matrix 
and define the degrees of freedom (df) of the estimator to 
be df = tr(S) (Hastie and Tibshirani 1990, p. 52). For linear 
regression, df = 2. For the isotonic regression estimator, df 
depends on the data. Suppose that the fit is composed of 1 
level sets with pk points in level set k. Then Sil = l /pk if 
i and j are in level set k, and Sij = 0 otherwise. Thus df 
= tr(Sj = ~ y = ~= ~ L = ~ p k  = 1, the number sii . ( l lpk)  
of level sets. Similarly, df for fa, the reduced monotonic 
fit, is the resultant number of level sets after the backward 
elimination. 

4.2 Method Comparisons 

Let dfI denote the estimated median number of degrees 
of freedom for the isotonic regression method, with similar 
terms for the other regression methods. The dfI increases 
as ,02 and n increase, as shown in Figure 2a for the linear 
statistical relation. The curves are similar for the other sta- 
tistical relations, with the degrees of freedom being nearly 
identical for the exponential relation and 80%-92% as high 
for the sigmoidal and the elbow relations. (The mean shift 
relation is described separately, as the methods behave dif- 
ferently with it.) The S, SI, IS, and R estimators follow a 
similar pattern (Fig. 2b) but require only one-fifth to one- 
third of the degrees of freedom as I requires. R and IS have 
the lowest df/dfI ratios, given in Table 4. Trends in the 
ratios can also be seen as a function of ,02. 

Figure 3 shows the median difference of r2-p2 for three 
of the statistical relations (linear, sigmoidal, and exponen- 
tial). Because all r2 - ,02 > 0, the methods "overfit" the 
data, with the overfitting decreasing by roughly one-half 
when the sample size is quadrupled. However, the other 
nonparametric methods have at most one-half of the over- 
fitting found for I. The median r 2 / p 2  values for linear re- 
gression are 1, .98, .94, and .80 for the linear, sigmoidal, 
exponential, and elbow statistical relations, regardless of n 
and p2.  Thus, except for the first two statistical relations, 
L is not competitive with the other estimators considered 
here. 

A good procedure for modeling a statistical relation 
should yield a fit where r2 = ,02 under correct model spec- 
ification and that is parsimonious; that is, requiring few df 
for the fit. Because the nonparametric methods all over- 
fit the data, the desired method will have the lowest r2 and 
lowest df. In this regard IS, SI, and R are all preferable to S 
and greatly outperform I. Thus we now restrict our compar- 
isons to IS, SI, and R. IS has the least amount of overfitting, 
whereas SI is generally comparable to or slightly better than 
R. R and IS have remarkly similar df for n = 50 and 200 for 
,02 5 .5. For larger p2 and n ,  d f ~ s< dfR. SI has the high- 
est median df, except that dfsI < dfR for ,02 > .90 when 
n = 200 and for p2 2 .50 when n = 800 for sigmoidal data 
and less frequently for linear and elbow data. Even in these 
exceptional cases, the 90th percentile df values exceed the 
median values by 1 for R but by at least 6.4 for SI. It is 
likely that some other choice of smoother would improve 
SI by decreasing df and the overfitting for the statistical 
relations considered here. Final preference between R, IS, 
and SI will also depend on such issues as continuity, which 
SI (where one joins the response values obtained for succes- 
sive points after the isotonic step) and IS enjoy, compared 
to the simplicity of the fit, which favors R. 

4.3 Mean Shift Statistical Relation 

The mean shift statistical relation is ideally suited to the 
reduced monotonic regression estimator; dfR = 2 for all n 
and p2. In fact, for p2 > .30, at least 96% of the samples 
result in two level sets. In contrast, dfI is roughly 8, 10, 
and 13 for n = 50, 200, and 800. The d f~s /d f~  and dfsl/dfl 
ratios increase from 20% to 60% and from 30% to 70% as 
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Figure 3. Overfitting (Defined as Median rL p 2 )  of the Nonparametric Methods for the Linear, Sigmoidal, and Exponential Statistical Relations as 
a Function of p2,  the True Coefficient of Determination, for (a) n = 50 and (b)n = 200, Based on 1,000 Simulations. (- -- -- -) I; (---) IS; (---) S; 
(---)SI; (-) R. 

p2 increases from .05 to .95, regardless of n. The dfs values 
are even higher, with values of 13, 34, and 67 for n = 50, 
200, and 800 when p2 = .95. IS underfits the mean shift 
statistical relation by roughly .04, .02, and .01 for n = 50, 
200, and 800, whereas SI underfits by one-half that amount 
for larger p2. 

5. DISCUSSION 

We have introduced two new regression methods-
reduced isotonic regression and reduced monotonic 
regression-to model data presumed to be isotonic (mono- 
tonic). The methods apply a backward elimination proce- 
dure to isotonic regression, greatly reducing the number of 
level sets obtained. The resulting number of levels depends 
on the choice of a* in the backward elimination procedure. 
When a* is the stepwise a level, a single level set is ob- 
tained with probability 1 - a under the null hypothesis of 
constant mean. Thus it discretizes a continuous dependent 
variable with a simple model with minimal overfitting, a 
desirable feature in many applications. Another attractive 
feature of the reduced monotonic regression method is that 
it is invariant to a monotonic transformation of the inde- 
pendent random variable, a property not shared by most 
nonparametric regression methods. 

Bacchetti (1989, p. 292) introduced the additive isotonic 
model, which is comprised of multiple isotonic independent 
variables. Bacchetti saw the need "to pool blocks even when 
there are no more violators, as long as each such pool does 
not increase the criterion by more than a specified amount" 
to yield a simpler model not as prone to overfitting, and 
he proposed an ad hoc solution. Extension of the backward 
elimination procedure to his method could provide a more 
solid basis for combining blocks for this model. 

A strong connection exists between the reduced mono- 
tonic regression method and the likelihood ratio change- 
point statistic. Worsley (1979) derived the distribution of 
the likelihood ratio statistic for the single changepoint 
problem for a sequence of n independent normally dis- 
tributed random variables with mean pi and common 
but unknown variance a 2 .  The changepoint problem that 
he tested was Ho: pi = p, i = 1 , .. . , n versus H I :  
pi = p , i  = 1, . . . ,k a n d p i  = p1 # p , i  = k +  
1,.. . , n ,  where p, pl, and k are unknown. Worsley pro- 
vided exact and approximate critical values of a t dis-
tribution with n - 2 df for n 5 50. The tail prob- 
abilities associated with these critical values are nearly iden- 
tical to those in Table 1. For n = 10, 20, and 50, Worsley 
obtained the values .0138, .0096, and .0060 for a = .lo; 
.0064, .0042, and ,0028 for a = .05; and .OO 1 14, .00064, 
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and .00042 for cu = .01. The similarity between his results 
and ours makes sense when one recalls that under Ho,back-
ward elimination will usually ultimately result in a test of 
a single shift in mean level. The reduced monotonic regres- 
sion method could be used to fit a changepoint model, with 
the advantage that multiple monotonic shifts in mean are 
allowed. 

We have performed simulations comparing the fits of 
five monotonic regression methods for several monotonic 
statistical relations, with the goal of achieving a parsimo- 
nious fit where the r 2  = p2, the true coefficient of deter- 
mination. Overall, the reduced monotonic regression (R) 
and isotonized-then-smoothed regression (IS) methods per- 
formed best, when a cross-validated running mean smoother 
was used. Linear regression underfits nonlinear statistical 
relations, resulting in poor comparative performance. The 
other four methods overfit the data somewhat, but the de- 
gree of overfitting declines with increasing sample size. Iso- 
tonic regression (I) substantially overfits the data and re- 
quires many degrees of freedom. IS performed consistently 
better than smoothed-then-isotonized regression (SI). Over- 
all, R performed very well, except that the degrees of free- 
dom are high for large n and p2. Only R fit the mean shift 
data well. The regression of LOGWBC on CD45 represents 
a practical situation involving a rapid shift in response level. 
In that instance IS underfit the data, and SI required many 
degrees of freedom; R avoided both problems and provided 
the best fit. 

Different choices of smoother (e.g., loess, kernel, smooth- 
ing spline) should be examined for IS and SI. We would ex- 
pect a judicious choice to reduce the degrees of freedom and 
overfitting seen here. We used the running mean smoother 
due to the ease of calculating the degrees of freedom of the 
estimator when combining it with the isotonization step and 
because the fit is invariant with respect to transformations 
of the independent variable. 

The reduced monotonic regression method is a powerful 
and flexible method for modeling monotonic data. Given its 
many attractive features and simplicity, the reduced mono- 

tonic regression method could prove to be a valuable addi- 
tion to those currently used by applied statisticians. SAS or 
FORTRAN programs for performing reduced isotonic and 
reduced monotonic regression are available from the first 
author on request. 

[Received April 1994. Revised May 1996.1 
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